设命题:函数在上单调递增;命题:不等式对任意的恒成立.若“且”为假,“或”为真,求的取值范围.
如图,在棱长都相等的正三棱柱中,分别为,的中点.
⑴求证:;
⑵求证:.
椭圆的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为,求椭圆的方程.
求与圆相外切,且与线相切于点的圆的方程.
有下列命题:
①在函数的图象中,相邻两个对称中心的距离为;
②函数的图象关于点对称;
③关于的方程有且仅有一个实数根,则实数;
④已知命题p:对任意的,都有,则是:存在,使得.
已知,, ,若共同作用在物体上,使物体从点(2,-3,2)移到(4,2,3),则合力所作的功_______________.