(9分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.
(1)求直线BE与平面ABCD所成角的正切值;
(2)在侧面PAB内找一点N,使NE⊥面PAC,
并求出N点到AB和AP的距离.
(9分)已知,为上的点.
(1)当为中点时,求证;
(2)当二面角——的大小为的值.
(8分)如图,四棱锥底面是正方形且四个顶点在球的同一个大圆(球面被过球心的平面截得的圆叫做大圆)上,点在球面上且面,且已知。
(1)求球的体积;
(2)设为中点,求异面直线与所成角的余弦值。
(8分) 如图,在四棱锥中,底面是边长为的正方形,侧面,且,若、分别为、的中点.
(1)求证:∥平面;
(2)求证:平面平面.
(7分)已知定点,动点在直线上运动,当线段最短时,求的坐标.
(7分) 已知两条直线:与:的交点,求满足下列条件的直线方程
(1)过点P且过原点的直线方程;
(2)过点P且平行于直线:直线的方程;