已知函数![]()
(1)若
求
的单调区间及
的最小值;
(2)若
,求
的单调区间;
(3)试比较)
的大小,
,并证明你的结论。
定长为3的线段AB两端点A、B分别在
轴,
轴上滑动,M在线段AB上,且![]()
(1)求点M的轨迹C的方程;
(2)设过
且不垂直于坐标轴的动直线
交轨迹C于A、B两点,问:线段
上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。
某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第
天的利润
(单位:万元,
),记第
天的利润率
,例如![]()
1.求
的值;
2.求第
天的利润率
;
3.该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率。
如图,在直角梯形ABCD中,AD//BC,
,当E、F分别在线段AD、BC上,且
,AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使平面ABFE与平面EFCD垂直。
1.判断直线AD与BC是否共面,并证明你的结论;
2.当直线AC与平面EFCD所成角为多少时,二面角A—DC—E的大小是60°。

2010年5月1日,上海世博会将举行,在安全保障方面,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选。假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为
。这三项测试能否通过相互之间没有影响。
1.求A能够入选的概率;
2.规定:按人选人数得训练经费(每人选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费的分布列与数学期望。
已知
(其中
)的最小正周期为
。
1.求
的单调递增区间;
2.在
中,
分别是角A,B,C的对边,已知
,求角C。
