以下四个命题中:
设为两个定点,为非零常数。,则动点的轨迹方程为双曲线。
过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为椭圆。
方程的两根可分别作为椭圆与双曲线的离心率。
双曲线与椭圆有共同的焦点。
其中真命题的序号为 。
定义某种运算,运算原理如图所示,则式子:
的值是 .
短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则△ABF2的周长为
若,,是平面内的三点,设向量,且,则________________。
点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为 。
点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是( )
A.直线上的所有点都是“点”
B.直线上仅有有限个点是“点”
C.直线上的所有点都不是“点”
D.直线上有无穷多个点(点不是所有的点)是“点”