从集合到集合的不同映射的个数是( )
A.81个 B.64个 C.24个 D.12个
(本题满分14分) 设函数.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在x=0处有极值,试求a的取值范围;
(Ⅲ)若对于任何上恒成立,求b的取值范围.
(本题满分14分) 口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若,求:
(1)n的值;
(2)X的概率分布与数学期望.
(本题满分14分) 已知为直线,及所围成的面积,为直线,及所围成图形的面积(为常数).
(1)若时,求;
(2)若,求的最大值.
(本小题满分14分)在二项式中有2m+n=0,如果它的展开式里最大系数项恰是常数项.
(1) 求它是第几项;(2)求的范围.
(本题满分12分) 直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.