(本小题满分14分)
如图所示,已知曲线交于点O、A,直线与曲线、分别交于点D、B,连结OD,DA,AB.
(1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为
(2)求函数在区间上的最大值.
(本小题满分13分)
甲、乙两人各射击一次,击中目标的概率分别是和,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?
(本小题满分13分)
设函数,已知是奇函数.
(Ⅰ)求、的值; (Ⅱ)求的单调区间与极值.
(本小题满分13分)
已知的展开式中第五项的系数与第三项的系数的比是10:1
(1)求展开式中各项系数的和;
(2)求展开式中含的项;
(本小题满分13分)
4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字做答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.
某中学拟于下学期在高二年级开设《矩阵与变换》、《信息安全与密码》、《开关电路与布尔代数》等三门数学选修课程,在计划任教高二年级的10名数学教师中,有3人只能任教《矩阵与变换》,有2人只能任教《信息安全与密码》,另有3人只能任教《开关电路与布尔代数》,这三门课程都能任教的只有2人,现要从这10名教师中选出9人,分别担任这三门选修课程的任课教师,且每门课程安排3名教师任教,则不同的安排方案共有 。