记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )
A.种 B.种 C.种 D. 种
如图3,在一个长为,宽为2的矩形OABC内,曲线与轴围成如图3所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内的任意一点是等可能的),则点落在阴影部分内的概率为( )
若复数 是实数,则x的值为( )
A.-3 B.3 C.0 D.
(附加题,本题10分)
如图所示,的图像下有一系列正三角形,求第n个正三角形的边长.
(本小题15分)
已知(m为常数,m>0且),设是首项为4,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)若bn=an·,且数列{bn}的前n项和Sn,当时,求;
(3)若cn=,问是否存在m,使得{cn}中每一项恒小于它后面的项?若存在,
求出m的范围;若不存在,说明理由.
(本小题10分)
某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的年平均费用最少?最少是多少?