(本小题满分12分)
已知函数,
(1) 若,,且的定义域是[– 1,1],P(x1,y1),Q(x2,y2)是其图象上任意两点(),设直线PQ的斜率为k,求证:;
(2) 若,且的定义域是,.
求证:.
(本小题满分12分)
如下图,O1(– 2,0),O2(2,0),圆O1与圆O2的半径都是1,
(1) 过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得.求动点P的轨迹方程;
(2) 若直线交圆O2于A、B,又点C(3,1),当m取何值时,△ABC的面积最大?
(本小题满分12分)
△ABC中,A(– 4,2).
(1)若∠ACB的平分线CD所在直线方程为,B(3,1),求点C的坐标;
(2)若两条中线所在直线分别为,求直线BC的方程.
(本小题满分13分)
(1) 已知圆C经过P(4,– 2),Q(–1,3)两点,若圆心C在直线y = 2x上,求圆C的方程;
(2) 已知圆M经过坐标原点O,圆心M在直线上,与x轴的另一个交点为A,△MOA为等腰直角三角形,求圆M的方程.
(本小题满分13分)
已知实数满足.
(1) 求的取值范围;
(2) 求的取值范围.
(本小题满分13分)
(1) 椭圆C与椭圆有相同焦点,且椭圆C上一点P到两焦点的距离之和等于,求椭圆C的标准方程;
(2) 椭圆的两个焦点F1、F2在x轴上,以| F1F2|为直径的圆与椭圆的一个交点为(3,4),求椭圆标准方程.