(本小题满分12分)已知函数.
(I)若函数在上是减函数,求实数的取值范围;
(II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由?
(III)当时,证明:.
(本小题满分12分)已知函数, ,点是函数图象上任意一点,直线为函数的图象在 处的切线.
(I)求直线的方程;
(II)若直线与的图象相切,求和的取值范围.
(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设向量(),若点在椭圆上,求的取值范围.
(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以km/h(其中)速度行驶时,汽车的耗油率为L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
(本小题满分10分)已知函数的图象过原点,且在、处取得极值.
(Ⅰ)求函数的单调区间及极值;
(Ⅱ)若函数与的图象有且仅有一个公共点,求实数的取值范围.
已知函数,当时,只有一个实数根;当时,有3个相异实根,
下列4个命题:
① 函数有2个极值点;
② 函数有3个极值点;
③=4和=0有一个相同的实根;
④=0和=0有一个相同的实根.
其中正确的命题是 .