(本小题满分10分)已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切.
(1)求圆C的方程;
(2)设直线:与圆C相交于A、B两点,求实数的取值范围;
(3)在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点, 若存在,求出实数的值;若不存在,请说明理由.
(本小题满分10分)某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨3元,购面粉每次需支付运费900元。
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受九折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
(本小题满分10分)如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD=2CD,求二面角A-EF-D的正切值;
(本小题满分10分)在△ABC中,内角A,B,C的对边分别为a,b,c,
已知a,b,c成等比数列,且 .
(Ⅰ)求的值;
(Ⅱ)设的值。
(本小题满分10分)在等差数列中,,。
(1) 求数列的通项公式;
(2) 令,求数列的前项和
过原点O作圆x2+y2-8x=0的弦OA,则弦OA中点M的轨迹方程是 .