设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB| + |CD|的最小
值。
(本小题12分)已知函数.
(1) 设,求函数的极值;
(2) 若,且当时,12a恒成立,试确定的取值范围.
已知二次函数,不等式的解集有且只有一个元素,设数列的前项和
(1)求数列的通项公式;
(2)设,求数列的前项和.
(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。
(1)求证:AB1//面BDC1;
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,求一等品的个数不少于3个的概率。
设函数
(1)求的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知,△ABC的面积为的值。