已知,则 .
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式:可把平面直角坐标系上的一点变换到这一平面上的一点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程,并求出其两个焦点、经变换公式变换后得到的点和的坐标;
(2) 若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点. 求(1)中的椭圆在变换下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换下的不动点的存在情况和个数.
(本题满分18分,其中第1小题6分,第2小题6分,第3小题6分)
已知数列的首项为1,前项和为,且满足,.数列满足.
(1) 求数列的通项公式;
(2) 当时,试比较与的大小,并说明理由;
(3) 试判断:当时,向量是否可能恰为直线的方向向量?请说明你的理由.
(本题满分14分,其中第1小题8分,第2小题6分)
一企业生产的某产品在不做电视广告的前提下,每天销售量为件. 经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量(件)与电视广告每天的播放量(次)的关系可用如图所示的程序框图来体现.
(1)试写出该产品每天的销售量(件)关于电视广告每天的播放量(次)的函数关系式;
(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加,则每天电视广告的播放量至少需多少次?
(本题满分14分)如图,在中,,,. 以点为圆心,线段的长为半径的半圆分别交所在直线于点、,交线段于点,求弧的长.(精确到)
(本题满分14分)已知,且以下命题都为真命题:
命题 实系数一元二次方程的两根都是虚数;
命题 存在复数同时满足且.
求实数的取值范围.