方程的解为 .
、是两个随机事件,,,,则 .
若(为虚数单位,),则 .
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
在数列中,,.
(1)设,证明:数列是等差数列;
(2)设数列的前项和为,求的值;
(3)设,数列的前项和为,,是否存在实数,使得对任意的正整数和实数,都有成立?请说明理由.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
已知的顶点在椭圆上,在直线上,
且.
(1)求边中点的轨迹方程;
(2)当边通过坐标原点时,求的面积;
(3)当,且斜边的长最大时,求所在直线的方程.
(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
某火山喷发停止后,为测量的需要,设距离喷口中心米内的圆环面为第区、米至米的圆环面为第区、……、第米至米的圆环面为第区,…,现测得第区火山灰平均每平方米为1000千克、第区每平方米的平均重量较第区减少、第区较第区又减少,以此类推,求:
(1)离火山口1225米处的圆环面平均每平方米火山灰重量(结果精确到1千克)?
(2)第几区内的火山灰总重量最大?