(本小题满分12分)
已知数列的前n项和为,且满足
(1)求的值;
(2)求数列的通项公式;
(3)若的前n项和为求满足不等式 的最小n值.
(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S—
CD—A的平面角为,M为AB中点,N为SC中点.
(1)证明:MN//平面SAD;
(2)证明:平面SMC⊥平面SCD;
|
(本小题满分12分)
设O为坐标原点,点P的坐标
(I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
(本小题满分12分)
在
(1)求角C的大小;
(2)若AB边的长为,求BC边的长.
若不等式的解集为,且,则a的取值集合为 .
设点P为的重心,若AB=2,AC=4,则
= .