(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点,
点是椭圆的右顶点.过点的直线交抛物线于两点,满足,
其中是坐标原点.
(1)求椭圆的方程;
(2)过椭圆的左顶点作轴平行线,过点作轴平行线,直线与
相交于点.若是以为一条腰的等腰三角形,求直线的方程.
(本小题15分)如图,四棱锥的底面为一直角梯形,其中
,底面,是的中点.
(1)求证://平面;
(2)若平面,
①求异面直线与所成角的余弦值;
②求二面角的余弦值.
(本小题14分)已知函数的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别
为和.
(1)求的解析式及的值;
(2)若锐角满足,求的值.
(本小题14分)从这九个数字中任意取出不同的三个数字.
(1)求取出的这三个数字中最大数字是的概率;
(2)记取出的这三个数字中奇数的个数为,求随机变量的分布列与数学期望.
过点的直线交圆于点,若,则实数_______
已知点在由不等式组确定的平面区域内,为坐标原点,
点,则的最大值是______.