(本题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的
直观图与三视图的侧视图、俯视图,在直观图中,是的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积。
(Ⅱ)若是的中点,求证:平面;
(Ⅲ)求证:平面平面.
(本小题满分12分)根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线拟合(,单位为小时,表示气温,单位为摄氏度,,,现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高。
(1)求这条曲线的函数表达式;
(2)求这一天19时整的气温。
(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.
(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
对于函数, 给出下列四个命题:
① 存在, 使;
② 存在, 使恒成立;
③ 存在, 使函数的图象关于坐标原点成中心对称;
④ 函数f(x)的图象关于直线对称;
⑤ 函数f(x)的图象向左平移就能得到的图象
其中正确命题的序号是 .
函数的单调递增区间是____
已知,且,则的最大值为