下列命题中为真命题的是( )
A.若
B.直线为异面直线的充要条件是直线不相交
C.“是“直线与直线互相垂直”的充要条件
D.若命题,则命题的否定为:
函数的定义域为集合,函数的定义域为集合,则( )
A. B. C. D.
(本小题共13分)设数列的前项和.
(Ⅰ)证明数列是等比数列;
(Ⅱ)若,且,求数列的前项和
(本小题满分13分)已知圆C:过点A(3,1),且过点(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.
(1)求切线PF的方程;
(2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。
(3)若Q为抛物线E上的一个动点,求的取值范围.
(本小题满分13分)已知函数
(Ⅰ)求函数在点(1, )处的切线方程
(Ⅱ)求函数的极值
(Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;
(本题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的
直观图与三视图的侧视图、俯视图,在直观图中,是的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积。
(Ⅱ)若是的中点,求证:平面;
(Ⅲ)求证:平面平面.