(本题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
数学 成绩 |
95 |
75 |
80 |
94 |
92 |
65 |
67 |
84 |
98 |
71 |
67 |
93 |
64 |
78 |
77 |
90 |
57 |
83 |
72 |
83 |
物理 成绩 |
90 |
63 |
72 |
87 |
91 |
71 |
58 |
82 |
93 |
81 |
77 |
82 |
48 |
85 |
69 |
91 |
61 |
84 |
78 |
86 |
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
|
数学成绩优秀 |
数学成绩不优秀 |
合 计 |
物理成绩优秀 |
|
|
|
物理成绩不优秀 |
|
|
|
合 计 |
|
|
20 |
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据及公式:
①随机变量,其中为样本容量;
②独立检验随机变量的临界值参考表:
0.010 |
0.005 |
0.001 |
|
6.635 |
7.879 |
10.828 |
(本题满分12分)如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.
(1)证明:平面ACD平面;
(2)若,,,
试求该简单组合体的体积V.
(本题满分12分)已知角为的三个内角,其对边分别为,若,,,且.
(1)若的面积,求的值.
(2)求的取值范围.
设是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则;
②若,则;
③若,则;
④若,则;
其中正确命题有_____________.(填上你认为正确命题的序号)
设均为正实数,且,则的最小值为____________.
依次写出数列的法则如下:如果为自然数且未写过,则写,否则就写,则= .(注意:0是自然数)