(本小题满分14分)
已知:有穷数列{an}共有2k项(整数k≥2 ),a1=2 ,设该数列的前n项和为 Sn且满足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通项公式;
(2)设bn=log2an ,求{bn}的前n项和Tn;
(3)设cn=,若a=2,求满足不等式 + +…++≥时k的最小值.
(本小题满分12分)
已知函数f(x)=(x∈R).
⑴当f(1)=1时,求函数f(x)的单调区间;
⑵设关于x的方程f(x)=的两个实根为x1,x2 ,且-1≤a≤1,求|x1-x2|的最大值;
⑶在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.
(本小题满分12分)
从某校高三年级800名男生中随机抽取50名学生测量其身高,据测量被测学生的身高全部在155cm到195cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),……,第八组[190,195],如下图是按上述分组得到的频率分布直方图的一部分.已知:第1组与第8组的人数相同,第6组、第7组和第8组的人数依次成等差数列.
⑴求下列频率分布表中所标字母的值,并补充完成频率分布直方图;
分组 |
频数 |
频率 |
频率/组距 |
… |
… |
… |
… |
z |
|||
[185,190) |
m |
n |
p |
… |
… |
… |
… |
⑵若从身高属于第6组和第8组的所有男生中随机的抽取2名男生,记他们的身高分别为x、y,求满足:|x-y|≤ 5事件的概率.
[来
(本小题满分12分)
已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).
(1)求椭圆C的方程;
(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.
(本小题满分12分)
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABC D.
(1)证明:BD⊥AA1;
(2)证明:平面AB1C//平面DA1C1
(3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(本小题满分12分)
已知:在△ABC中,a,b,c分别是角A、B、C所对的边,向量m=(2sin,),
n=(sin+,1) 且m·n=.
(1)求角B的大小;
(2)若角B为锐角,a=6,S△ABC=6,求b的值.