(14分)已知函数,其中为大于零的常数.
(Ⅰ)若曲线在点(1,)处的切线与直线平行,求的值;
(Ⅱ)求函数在区间[1,2]上的最小值.
(14分)已知数列满足, ,
(Ⅰ)计算出、、;
(Ⅱ)猜想数列通项公式,并用数学归纳法进行证明.
(14分)在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.圆O的参数方程为,(为参数,)
(1)求圆心的极坐标;
(2)当为何值时,圆O上的点到直线的最大距离为3.
(14分)今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是.并记需要比赛的场数为ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列与数学期望.
(12分)如图,已知正三棱柱的底面正三角形的边长是2,D是
的中点,直线与侧面所成的角是.
(Ⅰ)求二面角的正切值;
(Ⅱ)求点到平面的距离.
(12分)已知复数,,求复数实部的最值.