2条直线将一个平面最多分成4部分,3条直线将一个平面最多分成7部分, 4条直线将一个平面最多分成11部分,……;,,;……
(1)条直线将一个平面最多分成多少个部分(>1)?证明你的结论;
(2)个平面最多将空间分割成多少个部分(>2)?证明你的结论
【必做题】(本题满分10分)
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是‘‘海宝”,即可获奖,否则,均为不获奖.卡片用后后放同盒子,下一位参加者继续重复进行。
(I)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?
(2)若有四张“海宝”卡,现有甲乙丙丁四人依次抽奖.用表示获奖的人数,求的分布列及E的值.
已知,若对任意实数a,b,c恒成立,求实数的取值范围。
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为X轴的正半轴,建立平面直角坐标系,直线的参数方程是:,求直线与曲线C相交所称的弦的弦长。
设矩阵,求矩阵A的特征向量及A2
设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为或,在所得的含峰区间内选取,由与或与类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)