设集合,是双曲线,则( )
已知,,则( )
已知函数(为自然对数的底数),(为常数),是实数集 上的奇函数.
(1)求证:;
(2)讨论关于的方程:的根的个数;
(3)设,证明:(为自然对数的底数).
已知平面上两定点C(1,0),D(1,0)和一定直线,为该平面上一动点,作,垂足为Q,且
(1)问点在什么曲线上,并求出曲线的轨迹方程M;
(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.[来源:学
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形BC∥AD,∠DAB=90°,AB=BB1=4,BC=3,AD=5,AE=3,F、G分别为CD、C1D1的中点.
(1)求证:EF⊥平面BB1G;
(2)求二面角E-BB1-G的大小.
设数列的前n项积为;数列的前n项和为.
(1)设.①证明数列成等差数列;②求证数列的通项公式;
(2)若恒成立,求实数k的取值范围.