(本题满分12分)
已知数列满足,,(,).
(1)求证:数列是等差数列;
(2)若数列的前项和为,且恒成立,求的最小值.
(本题满分12分)
如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。
(1)求异面直线AE与A1C所成的角;
(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;
|
(本题满分12分)
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
|
A组 |
B组 |
C组 |
疫苗有效 |
673 |
||
疫苗无效 |
77 |
90 |
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知,求不能通过测试的概率.
(本题满分10分)
已知向量,其中.
(1)试判断向量与能否平行,并说明理由?
(2)求函数的最小值.
给出以下几个命题,正确的是 .
①函数对称中心是;
②已知是等差数列的前项和 ,若,则;
③函数为奇函数的充要条件是;
④已知均是正数,且,则。
下图(右)实线围成的部分是长方体(左)的平面展开图,其中四边形ABCD是边长为的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是 .