已知等差数列{an}满足:,则a8 =( )
A.18 B.20 C.22 D.24
设是集合A到集合B的映射.若,则( )
A.{0} B.{0,3} C.{3} D.{,0}
(本小题12分)如图,在长方体中,点在棱的延长线上,且.
(1)求证:∥平面;
(2)求证:平面平面;
(3)求四面体的体积.
(1)如图,向量被矩阵M作用后分别变成,¥高#考#资%源*
(Ⅰ)求矩阵M;(Ⅱ)并求在M作用后的函数解析式;
(2)已知在直角坐标系x0y内,直线l的参数方程为 .以Ox为极轴建立极坐标系,曲线C的极坐标方程为.若C与L的交点为P,求点P与点A(-2,0)的距离|PA|。
已知函数.
(Ⅰ)求的极值;
(II)判断y=f(x)的图像是否是中心对称图形,若是求出对称中心并证明,否则说明理由;
(III)设的定义域为,是否存在.当时,的取值范围是?若存在,求实数、的值;若不存在,说明理由
已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形
(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点);K^S*5U.C#O%
(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由