设集合,则( )
A. B. C. D.
(12分)已知过点的动直线与圆:相交于、两点,是中点,与直线:相交于.
(1)求证:当与垂直时,必过圆心;
(2)当时,求直线的方程;
(3)探索是否与直线的倾斜角有关,若无关,请求出其值;若有关,请说明理由.
(12分)设为奇函数,为常数。
(1)求的值;
(2)证明:在(1,+∞)内单调递增;
(3)若对于[3,4]上的每一个的值,不等式恒成立,求实数的取值范围。
(12分)
如图,在直三棱柱中,,为中点.
(1)求证:;
(2)求证: ∥平面 ;
(3)求二面角的余弦值.
(12分)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;
(Ⅲ)求的分布列和数学期望;
(12分)已知各项均为正数的数列的前n项和为,且成等差数列.
(1)求数列的通项公式;
(2)若,设求数列的前项和.