(本题满分10分)如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(本题满分10分)如图,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH.
(本题满分8分)如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.
设α,β为两个不重合的平面, 为两两不重合的直线,
给出下列四个命题:
①若α∥β, ,则∥
②若, ,∥β,∥β,则α∥β;
③若∥α, ⊥β,则α⊥β;
④若,且⊥m, ⊥n,则⊥α.
其中正确命题的序号是_______________.
圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为,则圆台较小底面的半径为_____.
某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本,用分层抽样方法应从老年人中抽取_________人。