(本小题满分13分)
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
(本小题满分13分)
在中,角,,所对的边分别为,,, ,.
(Ⅰ)求及的值;
(Ⅱ)若,求的面积.
已知正三棱柱的正(主)视图和侧(左)视图如图所示. 设的中心分别是,现将此三棱柱绕直线旋转,射线旋转所成的角为弧度(可以取到任意一个实数),对应的俯视图的面积为,则函数的最大值为 ;最小正周期为 .
说明:“三棱柱绕直线旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,旋转所成的角为正角,顺时针方向旋转时,旋转所成的角为负角.
已知圆:,过点的直线将圆分成弧长之比为的两段圆弧,则直线的方程为 .
甲和乙两个城市去年上半年每月的平均气温(单位:)用茎叶图记录如下,根据茎叶图可知,两城市中平均温度较高的城市是____________,气温波动较大的城市是____________.
甲城市 乙城市 |
|||||||||
|
|
|
9 |
0 |
|
|
|
|
|
8 |
7 |
7 |
3 |
1 |
2 |
4 |
7 |
|
|
|
|
|
2 |
2 |
0 |
4 |
7 |
|
|
抛物线过点,则点到此抛物线的焦点的距离为 .