椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点. (Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
某初级中学共有学生2000名,各年级男、女生人数如下表. 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19 .
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生, 问应在初三年级抽取多少名?
(3)已知,求初三年级中女生比男生多的概率.
如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°. (1)证明:平面ADB⊥平面BDC; (2)若BD=1,求三棱锥D-ABC的表面积.
已知圆过点,且圆心在轴的正半轴上,直线被该圆所截得的弦长为,求圆的标准方程.
已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”,给出下列直线:①y=x+1; ②;③y=2;④y=2x+1.其中为“B型直线”的是 .(填上所有正确结论的序号)
.抛物线上一点M(1,m) (m>0)
到其焦点的距离为5,双曲线的左顶点为A.
若双曲线的一条渐近线与直线AM平行,则实数等于 .