如图:已知三棱锥中,面,,,为上一点,,分别为的中点.
(1)证明:.
(2)求面与面所成的锐二面角的余弦值.
(3)在线段(包括端点)上是否存在一点,使平面?若存在,确定的位置;若不存在,说明理由.
若抛物线的顶点是双曲线的中心,焦点是双曲线的右顶点.
(1)求抛物线的标准方程.
(2)若直线过点交抛物线于两点,是否存在直线,使得恰为弦的中点?若存在,求出直线方程;若不存在,请说明理由.
如右图,一个结晶体的形状为平行六面体,以点为端点的三条棱
的长都等于,且彼此之间的夹角都是.
(1)用向量表示向量.
(2)求晶体的对角线长.
已知抛物线的顶点为椭圆的中心,椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点,求抛物线与椭圆的方程.
已知棱长为的正方体,点、分别是和的中点,建立如图所示的空间直角坐标系.
(1)写出图中、的坐标;
(2)求直线与所成角的余弦值.
以下四个命题中,说法正确的有 .(填入所有正确答案)
①若任意向量共线,则必存在唯一实数使得成立.
②若向量组是空间一个基底,则向量组也是空间的一个基底.
③所有的平行向量都相等.
④是直角三角形的充要条件是.