(本小题满分12分)
设函数定义在上,,导函数,.
(1)求的单调区间和最小值;(2)讨论与的大小关系;
(本小题共12分)
已知椭圆.过点(m,0)作圆的切线L交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.
本小题满分12分)
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
|
文艺节目 |
新闻节目 |
总计 |
20至40岁 |
40 |
18 |
58 |
大于40岁 |
15 |
27 |
42 |
总计 |
55 |
45 |
100 |
(1) 由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2) 用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应抽取几名?
(3) 在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率。
(满分12分)已知函数在与时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。
(满分12分)已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(Ⅰ)证明:面面;
(Ⅱ)求与所成的角;
(Ⅲ)求面与面所成二面角的余弦值。
.(10分)4.命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围。