(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是.
(1)求红色球的个数;
(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.
(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.
(1)求证:AC1∥平面CNB1;
(2)求四棱锥C-ANB1A1的体积.
(本小题满分12分)分别用二种方法写出算法语句,计算:1+2+3+……+99+100.
用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜
色,相邻的区域颜色不同,共有 种不同的涂色方案。
已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。
设α、β、γ是互不重合的平面,m,n是互不重合的直线,给出四个命题:
①若m⊥α,m⊥β,则α∥β
②若α⊥γ,β⊥γ,则α∥β
③若m⊥α,m∥β,则α⊥β ④若m∥α,n⊥α,则m⊥n
其中真命题的序号是______.