数列1,-3,5,-7,9,.......的一个通项公式为 ( )
A. B.
C. D.
(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(本小题满分12分). 已知中心在原点的双曲线C的一个焦点是一条渐近线的方程是
(1)求双曲线C的方程;
(2)若以为斜率的直线与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
(本小题满分12分). 若直线l:与抛物线交于A、B两点,O点是坐标原点。
(1)当m=-1,c=-2时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。
(本小题满分10分). 已知命题p:方程表示焦点在y轴上的椭圆;
命题q:双曲线的离心率;
若“”为真,“”为假,求实数的取值范围.
(本小题满分12分)
已知椭圆E的两个焦点分别为F1(-1,0), F2 (1,0), 点(1, )在椭圆E上.
(1)求椭圆E的方程
(2)若椭圆E上存在一点 P, 使∠F1PF2=30°, 求△PF1F2的面积.