(本小题满分12分)如图:A、B两城相距100 km,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气. 已知D地距A城x km,为保证城市安全,天燃气站距两城市的距离均不得少于10km . 已知建设费用y (万元)与A、B两地的供气距离(km)的平方和成正比,当天燃气站D距A城的距离为40km时, 建设费用为1300万元.(供气距离指天燃气站距到城市的距离)
(1)把建设费用y(万元)表示成供气距离x (km)的函数,并求定义域;
(2)天燃气供气站建在距A城多远,才能使建设供气费用最小.,最小费用是多少?
(本小题满分12分)求经过直线与直线的交点M,且分别满足下列条件的直线方程:
(1)与直线平行; (2)与直线垂直.
设cos=-,tan=, <<, 0<<求-的值
函数Y=cos(3x+)的图象可以先由Y=cosx的图象向 平移 个单位,然后把所得的图象上所有点的横坐标 为原来的 倍(纵坐标不变)而得到
等腰三角形一个底角的余弦为,那么这个三角形顶角的正弦值是
已知cos2=- ,那么tan2·sin2=