抛物线的焦点坐标是( )
A.(2,0) B. (- 2,0) C. (4,0) D. (- 4,0)
设函数 >1),且的最小值为,若,求的取值范围。
以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。
(I) 写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。
如图,Δ是内接于⊙O, ,直线切⊙O于点,弦, 与相交于点.
(I) 求证:Δ≌Δ;
(Ⅱ)若,求.
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.