如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(Ⅰ)求证:平面;
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.
高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组如图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数。
(2)设表示该班两个学生的百米测试成绩,已知求事件“”的概率。
已知以角为钝角的的内角A、B、C的对边分别为a、b、c,,且
(1)求角的大小;
(2)求的取值范围.
已知△ABD是等边三角形,且,那么四边形ABCD的面积为 _***_
在平面直角坐标系中,设是由不等式组表示的区域,是到原点的距离不大于1的点构成的区域,向中随机投一点,则所投点落在中的概率是 _ *** .
已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为 _***_