如图,在四棱锥中,底面,,,是的中点.
(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面;
已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,求过点(m,n)与垂直并且被截得的线段长为的直线方程。
正三棱锥的高为1,底面边长为,此三棱锥内有一个球和四个面都相切.
(1)求棱锥的全面积;
(2)求球的直径.
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且G是EF的中点,
(1)求证平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
已知函数是偶函数,且时,.求
(1) 的值,
(2) 时的值;
(3)当>0时,的解析式.
将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是___________________