(本小题满分14分)
在平面直角坐标系中,N为圆C:上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且.
(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为,当动点P与A,B不重合时,设直线与的斜率分别为,证明:为定值;
(本小题满分14分)
设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围。
(本小题满分12分)
已知椭圆C:,它的离心率为.直线与以原点为圆心,以C的短半轴为半径的圆O相切. 求椭圆C的方程.
(本小题满分12分)
已知关于的方程有两个不等的负根;关于的方程无实根。若为真,为假,求的取值范围
已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的离心率为 .
已知函数,其中.在点处的切线方程为,则函数a= ,b= .