满足的集合共有 ▲ 个
(本小题满分14分)已知的图像在点处的切线与直线平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(3)证明:
(本小题满分12分)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。
(1)求椭圆E的方程;
(2)求k的取值范围;
(3)求的取值范围。
(本小题满分12分)
在数列。
(1)求证:数列是等差数列,并求数列的通项公式;
(2)设,求数列的前项和。
(本题满分12分)在如图所示的空间几何体中,平面平面ABC,
AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在
的平分线上。
(1)求证:DE//平面ABC;
(2)求二面角E—BC—A的余弦值;
(本题满分12分)一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片。
(1)从盒中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字既不全是奇数,也不全是偶数的概率;
(2)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为偶数的概率;
(3)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当放回记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。