(本题满分15分)
已知抛物线的顶点在坐标原点,它的准线经过双曲线:的左焦点且
垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程;
(3)求双曲线离心率.
(本题满分14分)
在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求证:平面AFD⊥平面AFE.
本题满分14分)
已知直线l经过直线3x+4y-2=0与2x+y+2=0的交点P,且垂直于直线x-2y-1=0.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成的三角形的面积S.
.如右上图:设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形,若过点作此正方形的外接圆的切线在轴上的一个截距为,则此椭圆方程的方程为 ▲ .
对于曲线,给出下面四个命题:
①曲线不可能表示椭圆;
②当时,曲线表示椭圆;
③若曲线表示双曲线,则或;
④若曲线表示焦点在轴上的椭圆,则.
其中所有正确命题的序号为 ▲ .
点在直线ax+y-b=0上的射影是点Q(1,0),则直线ax+y-b=0关于直线x-y-2=0对称的直线方程为 ▲ .