在等差数列中,,前项和满足条件,
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前项和。
建造一间地面面积为12的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/, 侧面的造价为80元/, 屋顶造价为1120元. 如果墙高3, 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?
在△ABC中,角A、B、C所对应的边为
(1)若 求A的值;
(2)若,求的值.
已知函数f(x)=3x2+bx+c,不等式f(x)>0的解集为(-∞,-2)∪(0,+∞).
(1) 求函数f(x)的解析式;
(2) 已知函数g(x)=f(x)+mx-2在(2,+∞)上单调增,求实数m的取值范围;
(3) 若对于任意的x∈[-2,2],f(x)+n≤3都成立,求实数n的最大值.
已知全集U={x | x-7x+10≥0},A={x | |x -4| >2} ,B={x | ≥0},
求:C UA,AB
三个同学对问题“关于的不等式+25+|-5|≥在[1,12]上恒成
立,求实数的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围是 .