(本小题满分14分)在周长为定值的中,已知,动点的运动轨迹为曲线G,且当动点运动时,有最小值.
(1) 以所在直线为轴,线段的中垂线为轴建立直角坐标系,求曲线的方程;
(2) 过点作圆的切线交曲线于,两点.将线段MN的长|MN|表示为的函数,并求|MN|的最大值.
(本小题满分13分)已知,函数,.
(1)判断函数在区间上的单调性(其中为自然对数的底数);
(2)是否存在实数,使曲线在点处的切线与轴垂直
若存在,求出的值;若不存在,请说明理由.
本小题满分12分)如图菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.
(1) 求证:平面;
(2) 求证:平面平面;
(3) 求三棱锥的体积.
(本小题满分12分)设函数若曲线的斜率最小的切线与直线平行,求:
(1) 的值; (2) 函数的单调区间.
(本小题满分12分)已知直线:与直线:互相平行,经过点的直线与,垂直,且被,截得的线段长为,试求直线的方程.
(本小题满分12分)已知函数.
(1)设,且,求的值;
(2)在△ABC中,AB=1,,且△ABC面积为,求sinA+sinB的值.