已知a=(sinx,-cosx),b=(cosx,cosx),函数 f(x)=a.·b+.
(1)求 f(x)的最小正周期,并求其图象对称中心的坐标;
(2)当0≤x≤时,求函数 f(x)的值域.
函数y=lg(3-4x+x2)的定义域为M,当x∈M时,求 f(x)=2x+2-3×4x的最值.
若a,b是两个不共线的非零向量,t∈R.若|a|=|b|=2且a与b夹角为60°,t为何值时,|a-tb|的值最小?
已知定义在R上的奇函数 f(x)有最小正周期2,且当x∈(0,1)时, f(x)=.
(1) 求 f(x)在[-1,1]上的解析式;
(2) 证明: f(x)在(0,1)上是减函数.
已知sinα=,求tan(α+)+.
奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为__________.