若纯虚数满足,(是虚数单位,是实数),则
A. B. C. D.
已知集合,则
A. B. C. D.
已知函数.
(Ⅰ)若函数在上是增函数,求正实数的取值范围;
(Ⅱ)若,且,设,求函数在上的最大值和最小值.
已知椭圆:的右焦点,过原点和轴不重合的直线与椭圆 相交于,两点,且,最小值为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若圆:的切线与椭圆相交于,两点,当,两点横坐标不相等时,问:与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
如图,在直三棱柱中,平面 侧面.
(Ⅰ)求证:;
(Ⅱ)若直线与平面所成角是,锐二面角的平面角是,试判断与的大小关系,并予以证明.
设Sn是正项数列的前n项和, .
(I)求数列的通项公式;
(II)的值.