已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.
(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?
(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,
请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?
已知命题,满足,命题,方程都表示焦点在轴上的椭圆.若命题为真命题,为假命题,求实数的取值范围
在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点形成轨迹.
(1)求轨迹的方程;
(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值
如图,在长方形中,,.现将沿折起,使平面平面,设为中点,则异面直线和所成角的余弦值为 .
设直线与圆交于两点, 若圆的圆心在线段上, 且圆与圆相切,切点在圆的优弧上, 则圆的半径的最小值是
点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为