(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到
两个焦点的距离之和为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为、,过点的直线与该椭圆交于点、,
以、为邻边作平行四边形,求该平行四边形对角线的长度
的最大值.
(本小题满分14分)如图,正方形和四边形所在的平面互相垂直,
,,,
(Ⅰ)求证:;
(Ⅱ)求异面直线所成角的余弦值.
(本小题满分14分) 已知命题:存在,使;命题:方程表示双曲线.若命题“”为真命题,求实数的取值范围.
如图,在三棱柱中,侧面,且与底面成角,,则该棱柱体积的 最小值为 .
已知、分别是双曲线的左、右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,且,则双曲线的离心率为 .
已知抛物线顶点在坐标原点,焦点在轴的正半轴上,且抛物线上的一点到焦点的距离是5,则 .