某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),年
产量不足80千件时,C(x)=2+10x(万元);当年产量不小于80千件时,
C(x)=51x+-1450(万元).通过市场分析,若每件售价为500元时,该厂当年生产
的该产品能全部销售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
已知函数.(e是自然对数的底数)
(1)判断在上是否是单调函数,并写出在该区间上的最小值;
(2)证明:
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.
(1)设,求y关于的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?
已知向量.
(1)当时,求的值;
(2)设函数, 求的值域.
具有性质:的函数,我们称为满足“倒负”变换的函数,下列函数:
;; y=
其中满足“倒负”变换的函数是
用表示a,b两个数中的最大数,设,那么由函数的图象、x轴、直线和直线所围成的封闭图形的面积之和是 .