给出下列三个类比结论.
①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn;
②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;
③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.
其中结论正确的个数是( )
A.0 B.1 C.2 D.3
已知函数在处的导数为3,则的解析式可能为( )
A.(x-1)3+3(x-1) B.2(x-1)2 C.2(x-1) D.x-1
函数y=(2x+1)3在x=0处的导数是( )
A.0 B.1 C.3 D.6
已知函数f(x)=ax2+c,且=2,则a的值为( )
A.1 B. C.-1 D. 0
((本题满分14分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
(1)假设这名射手射击5次,求恰有2次击中目标的概率;
(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;
(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.
((本小题满分13分)设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,又满足OP⊥OQ.
(1)求m的值;
(2)求直线PQ的方程.