已知二次函数y=f(x)的图像经过坐标原点,其导函数为=6x-2,数列{}的前n项和为,点(n,)(n∈N*)均在函数y=f(x)的图像上.(Ⅰ)求数列{}的通项公式;
(Ⅱ)设,是数列{}的前n项和,求使得<对所有
n∈N*都成立的最小正整数m;
已知函数,.
(Ⅰ)求的极值;
(Ⅱ)若在上恒成立,求的取值范围.
某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.
(I)将一个星期的商品销售利润表示成的函数;
(II)如何定价才能使一个星期的商品销售利润最大?
数列{}满足=1,=,(1)计算,,的值;
(2)归纳推测,并用数学归纳法证明你的推测.
已知函数
(1)求的单调递减区间;
(2)若在区间上的最大值为20,求它在该区间上的最小值。
从4名男生,3名女生中选出三名代表:
(1)不同的选法共有多少种?
(2)至少有一名女生的不同的选法共有多少种?
(3)代表中男、女生都要有的不同的选法共有多少种?