命题p:关于的不等式对于一切恒成立,命题q:函数是增函数,若为真,为假,求实数的取值范围;
某商场预计全年分批购入每台价值为2 000元的电视机共
3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
已知、、为的三内角,且其对边分别为、、,若.
(Ⅰ)求; (Ⅱ)若,求的面积
曲线C是平面内与两个定点F1(-1,0)与F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹,给出下列三个结论:
(1)曲线C过坐标原点;
(2)曲线C关于坐标原点对称;
(3)若点p在曲线C上,则三角形F1PF2的面积不大于。
其中所有正确结论的序号是____
过抛物线X2=2py(p>0)的焦点作斜率为1的直线与该抛物线交与A,B两点,A,B在x轴上的正射影分别为C,D,若梯形的面积为则p=____
黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n个图案中有白色地面砖 块.