(本题满分12分)
已知(m为常数,且m>0)有极大值,
(Ⅰ)求m的值;
(Ⅱ)求曲线的斜率为2的切线方程.
(本题满分12分)在平面直角坐标系中,的两个顶点的坐标分别为,平面内两点同时满足一下条件:①;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中的轨迹交于两点,求的取值范围。
(本小题满分12分)已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且.
(1) 求数列,的通项公式;
(2) 记,求证:.
(本题满分12分)
已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.
(1)证明:点在平面上的射影为的中点;
(2)求二面角的大小 ;
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(本题满分12分)
已知函数
(1)求函数的最小正周期;
(2)若存在,使不等式成立,求实数m的取值范围.